Submit Manuscript  

Article Details


Study on characteristics of schottky temperature detector based on metal/n-ZnO/n-Si structures

Author(s):

Fang Wang, Jingkai Wei, Caixia Guo, Tao Ma, Linqing Zhang, Congxin Xia and Yufang Liu*   Pages 1 - 8 ( 8 )

Abstract:


Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary.

Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range.

Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied.

Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved.

Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.

Keywords:

MEMS device, ZnO, schottky structure, high temperature, large temperature range, high response sensitivity.

Affiliation:

College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, School of Physics, Henan Normal University, Xinxiang 453007, School of Physics, Henan Normal University, Xinxiang 453007



Read Full-Text article